Skip to content
MathsEdu.gr
MathsEdu.gr

Cogito, ergo sum

  • ΑΡΧΙΚΗ
  • Α ΓΥΜΝΑΣΙΟΥ
    • 7. ΘΕΤΙΚΟΙ ΚΑΙ ΑΡΝΗΤΙΚΟΙ ΑΡΙΘΜΟΙ
  • Β ΓΥΜΝΑΣΙΟΥ
    • Θεωρία Β Γυμνασίου
    • 0. ΡΗΤΟΙ ΑΡΙΘΜΟΙ
    • Α1. ΕΞΙΣΩΣΕΙΣ – ΑΝΙΣΩΣΕΙΣ
    • Α2. ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ
    • Α3. ΣΥΝΑΡΤΗΣΕΙΣ
    • Β1. ΕΜΒΑΔΑ –ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ
    • Β2. ΤΡΙΓΩΝΟΜΕΤΡΙΑ
    • Β3. ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ
  • Γ ΓΥΜΝΑΣΙΟΥ
    • Θεωρία Γ Γυμνασίου
    • Α1. ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ
    • Α2. ΕΞΙΣΩΣΕΙΣ – ΑΝΙΣΩΣΕΙΣ
    • Α3. ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΩΝ ΕΞΙΣΩΣΕΩΝ
    • 4. ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ
    • Β1. ΓΕΩΜΕΤΡΙΑ
  • Α ΛΥΚΕΙΟΥ
    • 2. ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ
    • 7. ΜΕΛΕΤΗ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ
    • ΕΚΦΩΝΗΣΕΙΣ ΑΠΟΔΕΙΞΕΩΝ της Α ΛΥΚΕΙΟΥ
  • Β ΛΥΚΕΙΟΥ
    • ΑΠΟΔΕΙΞΕΙΣ
  • Γ ΛΥΚΕΙΟΥ
    • ΕΚΦΩΝΗΣΕΙΣ ΑΠΟΔΕΙΞΕΩΝ Γ ΛΥΚΕΙΟΥ
  • Όροι χρήσης
MathsEdu.gr

Cogito, ergo sum

Παράγωγος της c*f, όπου c σταθερά (απόδειξη)

Posted on

Θεώρημα 10. Αν η συναρτήση \textcolor{blue}{f}  είναι παραγωγίσιμη, τότε να αποδείξετε ότι η συνάρτηση \textcolor{blue}{c \cdot f}  είναι παραγωγίσιμη και ισχύει:

    \[\textcolor{blue}{(c \cdot f)'(x) =c \cdot f'(x)$ }\]


Εστω συναρτήση f παραγωγίσιμη.

Ισχύει:

    \[(c \cdot f)'(x) = (c)'\cdot f(x)+cf'(x)= 0\cdot f(x)+cf'(x)=c \cdot f'(x)\]

ΑΠΟΔΕΙΞΕΙΣ

Πλοήγηση άρθρων

Previous post
Next post

Related Posts

Όριο πολυωνυμικής συνάρτησης (απόδειξη)

Posted on

Θεώρημα 2. Έστω το πολυώνυμο    και Nα αποδείξετε ότι  Έστω το πολυώνυμο και Σύμφωνα με τις ιδιότητες των ορίων έχουμε:    

Read More

Παράγωγος της x^α, με α πραγματικό αριθμό (απόδειξη)

Posted on

Θεώρημα 13. Εστω η συνάρτηση . Να αποδείξετε ότι η συνάρτηση f είναι παραγωγίσιμη στο  και ισχύει  δηλαδή     Πράγματι, αν και θέσουμε τότε έχουμε Επομένως,    

Read More

Θεώρημα αρχικής συνάρτησης (απόδειξη)

Posted on

Θεώρημα 21.  Έστω f μια συνάρτηση ορισμένη σε ένα διάστημα Δ. Αν F είναι μια παράγουσα της f στο Δ, τότε να αποδείξετε ότι:  όλες οι συναρτήσεις της μορφής είναι παράγουσες της f στο Δ. κάθε άλλη παράγουσα G της f στο Δ παίρνει τη μορφή . (ΗΜ. 2010, ΗΜ….

Read More

Αφήστε μια απάντηση Ακύρωση απάντησης

Η ηλ. διεύθυνση σας δεν δημοσιεύεται. Τα υποχρεωτικά πεδία σημειώνονται με *

#Ανισώσεις (1) #ΑνισώσειςΑΒαθμού (1) #ΚοινέςΛύσεις (1) #ΛύσηΑνισώσεων (1) #Μαθηματικά (1) #ΜαθηματικάΓυμνασίου (1) #ΜαθηματικάΛυκείου (1) #ΠραγματικοίΑριθμοί (1) #ΣύστημαΑνισώσεων (1)

©2025 MathsEdu.gr | WordPress Theme by SuperbThemes