Skip to content
MathsEdu.gr
MathsEdu.gr

Cogito, ergo sum

  • ΑΡΧΙΚΗ
  • Α ΓΥΜΝΑΣΙΟΥ
    • 7. ΘΕΤΙΚΟΙ ΚΑΙ ΑΡΝΗΤΙΚΟΙ ΑΡΙΘΜΟΙ
  • Β ΓΥΜΝΑΣΙΟΥ
    • Θεωρία Β Γυμνασίου
    • 0. ΡΗΤΟΙ ΑΡΙΘΜΟΙ
    • Α1. ΕΞΙΣΩΣΕΙΣ – ΑΝΙΣΩΣΕΙΣ
    • Α2. ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ
    • Α3. ΣΥΝΑΡΤΗΣΕΙΣ
    • Β1. ΕΜΒΑΔΑ –ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ
    • Β2. ΤΡΙΓΩΝΟΜΕΤΡΙΑ
    • Β3. ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ
  • Γ ΓΥΜΝΑΣΙΟΥ
    • Θεωρία Γ Γυμνασίου
    • Α1. ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ
    • Α2. ΕΞΙΣΩΣΕΙΣ – ΑΝΙΣΩΣΕΙΣ
    • Α3. ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΩΝ ΕΞΙΣΩΣΕΩΝ
    • 4. ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ
    • Β1. ΓΕΩΜΕΤΡΙΑ
  • Α ΛΥΚΕΙΟΥ
    • 2. ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ
    • 7. ΜΕΛΕΤΗ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ
    • ΕΚΦΩΝΗΣΕΙΣ ΑΠΟΔΕΙΞΕΩΝ της Α ΛΥΚΕΙΟΥ
  • Β ΛΥΚΕΙΟΥ
    • ΑΠΟΔΕΙΞΕΙΣ
  • Γ ΛΥΚΕΙΟΥ
    • ΕΚΦΩΝΗΣΕΙΣ ΑΠΟΔΕΙΞΕΩΝ Γ ΛΥΚΕΙΟΥ
  • Όροι χρήσης
MathsEdu.gr

Cogito, ergo sum

Κατηγορία: Γ ΛΥΚΕΙΟΥ

Θεμελιώδες θεώρημα ολοκληρωτικού λογισμού (απόδειξη)

Posted on

Θεώρημα 22.  (Θεμελιώδες θεώρημα του ολοκληρωτικού λογισμού) Έστω f μια συνεχής συνάρτηση σ’ ένα διάστημα . Αν G είναι μια παράγουσα της f στο , τότε     (ΗΜ. 2002, ΗΜ. 2013) Έστω f μια συνεχής συνάρτηση σ’ ένα διάστημα και G είναι μια παράγουσα της f στο . Η…

Read more

Θεώρημα αρχικής συνάρτησης (απόδειξη)

Posted on

Θεώρημα 21.  Έστω f μια συνάρτηση ορισμένη σε ένα διάστημα Δ. Αν F είναι μια παράγουσα της f στο Δ, τότε να αποδείξετε ότι:  όλες οι συναρτήσεις της μορφής είναι παράγουσες της f στο Δ. κάθε άλλη παράγουσα G της f στο Δ παίρνει τη μορφή . (ΗΜ. 2010, ΗΜ….

Read more

Θεώρημα τοπικού ακροτάτου – Γνησίως αύξουσα (απόδειξη)

Posted on

Θεώρημα 20.  Έστω μια συνάρτηση παραγωγίσιμη σ’ ένα διάστημα με εξαίρεση ίσως ένα σημείο του στο οποίο όμως η είναι συνεχής. Aν η διατηρεί πρόσημο στο τότε να αποδείξετε ότι το δεν είναι τοπικό ακρότατο και η  είναι γνησίως μονότονη στο (ΗΜ. 2017, ΗΜ. 2021) Έστω μια συνάρτηση παραγωγίσιμη σ’…

Read more

Θεώρημα τοπικών ακροτήτων – τοπικό μέγιστο (απόδειξη)

Posted on

Θεώρημα 19. Έστω μια συνάρτηση  παραγωγίσιμη σ’ ένα διάστημα με εξαίρεση ίσως ένα σημείο του στο οποίο όμως η  είναι συνεχής. Αν στο και   στο τότε να αποδείξετε ότι το είναι τοπικό μέγιστο της . (ΗΜ. 2012, ΗΜ, 2019) Έστω μια συνάρτηση παραγωγίσιμη σ’ ένα διάστημα με εξαίρεση ίσως ένα…

Read more

Θεώρημα Fermat (απόδειξη)

Posted on

Θεώρημα 18. (Θ. Fermat) Έστω μια συνάρτηση ορισμένη σ’ ένα διάστημα Δ και ένα εσωτερικό σημείο του Δ. Αν η παρουσιάζει τοπικό ακρότατο στο και είναι παραγωγίσιμη στο σημείο αυτό, τότε να αποδείξετε ότι:     (ΗΜ. 2004, ΗΜ. 2011) Έστω μια συνάρτηση ορισμένη σ’ ένα διάστημα Δ και ένα…

Read more

Θεώρημα σταθερής συνάρτησης (2η απόδειξη)

Posted on

Θεώρημα 17.  Έστω δυο συναρτήσεις ορισμένες σε ένα διάστημα Δ. Αν οι είναι συνεχείς στο Δ και για κάθε εσωτερικό σημείο x του Δ, τότε να αποδείξετε ότι υπάρχει σταθερά τέτοια, ώστε για κάθε να ισχύει:     Έστω δυο συναρτήσεις ορισμένες σε ένα διάστημα Δ. Αν οι είναι συνεχείς…

Read more

Θεώρημα σταθερής συνάρτησης (1η απόδειξη)

Posted on

Θεώρημα 16.  Έστω μια συνάρτηση f ορισμένη σε ένα διάστημα Δ. Αν η είναι συνεχής στο Δ και για κάθε εσωτερικό σημείο x του Δ, να αποδείξετε οτι η είναι σταθερή σε όλο το διάστημα Δ. (ΗΜ. 2009, ΗΜ. 2014) Έστω μια συνάρτηση f ορισμένη σε ένα διάστημα Δ. Αν…

Read more

Παράγωγος της ln|x| (απόδειξη)

Posted on

Θεώρημα 15.  Έστω η συνάρτηση . Να αποδείξετε ότι η συνάρτηση είναι παραγωγίσιμη στο  και ισχύει  δηλαδή     (ΗΜ. 2008) Έστω η συνάρτηση Αν τότε Αν τότε οπότε, αν θέσουμε \begin{center} και \end{center} έχουμε y = lnu. Επομένως,     Άρα,    

Read more

Παράγωγος της α^x (απόδειξη)

Posted on

Θεώρημα 14. Έστω η συνάρτηση  Να αποδείξετε ότι η συνάρτηση  είναι παραγωγίσιμη στο  και ισχύει δηλαδή     Πράγματι, αν και θέσουμε τότε έχουμε Επομένως,    

Read more

Παράγωγος της x^α, με α πραγματικό αριθμό (απόδειξη)

Posted on

Θεώρημα 13. Εστω η συνάρτηση . Να αποδείξετε ότι η συνάρτηση f είναι παραγωγίσιμη στο  και ισχύει  δηλαδή     Πράγματι, αν και θέσουμε τότε έχουμε Επομένως,    

Read more
  • 1
  • 2
  • 3
  • Next

#Ανισώσεις (1) #ΑνισώσειςΑΒαθμού (1) #ΚοινέςΛύσεις (1) #ΛύσηΑνισώσεων (1) #Μαθηματικά (1) #ΜαθηματικάΓυμνασίου (1) #ΜαθηματικάΛυκείου (1) #ΠραγματικοίΑριθμοί (1) #ΣύστημαΑνισώσεων (1)

©2025 MathsEdu.gr | WordPress Theme by SuperbThemes