Skip to content
MathsEdu.gr
MathsEdu.gr

Cogito, ergo sum

  • ΑΡΧΙΚΗ
  • Α ΓΥΜΝΑΣΙΟΥ
    • 7. ΘΕΤΙΚΟΙ ΚΑΙ ΑΡΝΗΤΙΚΟΙ ΑΡΙΘΜΟΙ
  • Β ΓΥΜΝΑΣΙΟΥ
    • Θεωρία Β Γυμνασίου
    • 0. ΡΗΤΟΙ ΑΡΙΘΜΟΙ
    • Α1. ΕΞΙΣΩΣΕΙΣ – ΑΝΙΣΩΣΕΙΣ
    • Α2. ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ
    • Α3. ΣΥΝΑΡΤΗΣΕΙΣ
    • Β1. ΕΜΒΑΔΑ –ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ
    • Β2. ΤΡΙΓΩΝΟΜΕΤΡΙΑ
    • Β3. ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ
  • Γ ΓΥΜΝΑΣΙΟΥ
    • Θεωρία Γ Γυμνασίου
    • Α1. ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ
    • Α2. ΕΞΙΣΩΣΕΙΣ – ΑΝΙΣΩΣΕΙΣ
    • Α3. ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΩΝ ΕΞΙΣΩΣΕΩΝ
    • 4. ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ
    • Β1. ΓΕΩΜΕΤΡΙΑ
  • Α ΛΥΚΕΙΟΥ
    • 2. ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ
    • 7. ΜΕΛΕΤΗ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ
    • ΕΚΦΩΝΗΣΕΙΣ ΑΠΟΔΕΙΞΕΩΝ της Α ΛΥΚΕΙΟΥ
  • Β ΛΥΚΕΙΟΥ
    • ΑΠΟΔΕΙΞΕΙΣ
  • Γ ΛΥΚΕΙΟΥ
    • ΕΚΦΩΝΗΣΕΙΣ ΑΠΟΔΕΙΞΕΩΝ Γ ΛΥΚΕΙΟΥ
  • Όροι χρήσης
MathsEdu.gr

Cogito, ergo sum

Απόσταση δύο σημείων με γνωστές συντεταγμένες

Posted on

Για να βρούμε την απόσταση δύο σημείων κάνουμε τα εξής βήματα:

1. Σχηματίζουμε ορθογώνιο τρίγωνο χρησιμοποιώντας ένα βοηθητικό σημείο.

2. Υπολογίζουμε την οριζόντια και κατακόρυφη απόσταση ως τη διαφορά των τετμημένων και τεταγμένων. Η χρήση της απόλυτης τιμής διασφαλίζει ότι οι αποστάσεις είναι πάντα θετικοί αριθμοί.

3. Εφαρμόζουμε το Πυθαγόρειο Θεώρημα για να βρούμε την απόσταση των σημείων.

Millileter Page A4 Download

3. ΣΥΝΑΡΤΗΣΕΙΣ

Πλοήγηση άρθρων

Previous post
Next post

Related Posts

H γραφική παράσταση μιας συνάρτησης διέρχεται από γνωστό σημείο 

Posted on
Read More

Αφήστε μια απάντηση Ακύρωση απάντησης

Η ηλ. διεύθυνση σας δεν δημοσιεύεται. Τα υποχρεωτικά πεδία σημειώνονται με *

#Ανισώσεις (1) #ΑνισώσειςΑΒαθμού (1) #ΚοινέςΛύσεις (1) #ΛύσηΑνισώσεων (1) #Μαθηματικά (1) #ΜαθηματικάΓυμνασίου (1) #ΜαθηματικάΛυκείου (1) #ΠραγματικοίΑριθμοί (1) #ΣύστημαΑνισώσεων (1)

©2025 MathsEdu.gr | WordPress Theme by SuperbThemes