Skip to content
MathsEdu.gr
MathsEdu.gr

Cogito, ergo sum

  • ΑΡΧΙΚΗ
  • Α ΓΥΜΝΑΣΙΟΥ
    • 7. ΘΕΤΙΚΟΙ ΚΑΙ ΑΡΝΗΤΙΚΟΙ ΑΡΙΘΜΟΙ
  • Β ΓΥΜΝΑΣΙΟΥ
    • Θεωρία Β Γυμνασίου
    • 0. ΡΗΤΟΙ ΑΡΙΘΜΟΙ
    • Α1. ΕΞΙΣΩΣΕΙΣ – ΑΝΙΣΩΣΕΙΣ
    • Α2. ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ
    • Α3. ΣΥΝΑΡΤΗΣΕΙΣ
    • Β1. ΕΜΒΑΔΑ –ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ
    • Β2. ΤΡΙΓΩΝΟΜΕΤΡΙΑ
    • Β3. ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ
  • Γ ΓΥΜΝΑΣΙΟΥ
    • Θεωρία Γ Γυμνασίου
    • Α1. ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ
    • Α2. ΕΞΙΣΩΣΕΙΣ – ΑΝΙΣΩΣΕΙΣ
    • Α3. ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΩΝ ΕΞΙΣΩΣΕΩΝ
    • 4. ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ
    • Β1. ΓΕΩΜΕΤΡΙΑ
  • Α ΛΥΚΕΙΟΥ
    • 2. ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ
    • 7. ΜΕΛΕΤΗ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ
    • ΕΚΦΩΝΗΣΕΙΣ ΑΠΟΔΕΙΞΕΩΝ της Α ΛΥΚΕΙΟΥ
  • Β ΛΥΚΕΙΟΥ
    • ΑΠΟΔΕΙΞΕΙΣ
  • Γ ΛΥΚΕΙΟΥ
    • ΕΚΦΩΝΗΣΕΙΣ ΑΠΟΔΕΙΞΕΩΝ Γ ΛΥΚΕΙΟΥ
  • Όροι χρήσης
MathsEdu.gr

Cogito, ergo sum

Κατηγορία: Α1. ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ

Πράξεις ρητών παραστάσεων – Ασκήσεις

Posted on
Read more

1.10 Ε.Κ.Π. ακεραίων αλγεβρικών παραστάσεων

Posted on
Read more

1.10 Πολλαπλασιασμός – Διαίρεση ρητών παραστάσεων

Posted on
Read more

1.6 Παραγοντοποίηση-Επαναληπτικές ασκήσεις

Posted on
Read more

1.9 Ρητές αλγεβρικές παραστάσεις

Posted on
Read more

1.6 Παραγοντοποίηση – Επίλυση εξισώσεων

Posted on
Read more

1.6 Παραγοντοποίηση – Ανάπτυγμα τετραγώνου

Posted on
Read more

1.6 Παραγοντοποίηση – Διαφορά τετραγώνων

Posted on

Να υπολογίσουμε την παράσταση: $97^2 – 3^2$ Έχουμε: $97^2 – 3^2 = 9409 – 9 = 9400$ Μπορούμε, όμως, να χρησιμοποιήσουμε την ταυτότητα της διαφοράς τετραγώνων για να απλοποιήσουμε τον υπολογισμό. Η παράσταση 97^2 – 3^2 γράφεται ως εξής: $$97^2 – 3^2 = (97 + 3)(97 – 3)=100\cdot 94 =9400$$ Δηλαδή, με…

Read more

1.6 Παραγοντοποίηση – Ομαδοποίηση

Posted on

Η παραγοντοποίηση με κοινό παράγοντα κατά ομάδες, γνωστή και ως ομαδοποίηση, εφαρμόζεται όταν δεν υπάρχει κοινός παράγοντας σε όλους τους όρους μιας παράστασης. Η μέθοδος βασίζεται στα εξής βήματα: Παράδειγμα: Για την παράσταση  αx + αy + 2x + 2y, η παραγοντοποίηση με ομαδοποίηση γίνεται ως εξής: Σημαντικές Παρατηρήσεις:

Read more

1.6 Παραγοντοποίηση – Μέθοδος κοινού παράγοντα

Posted on

Η μέθοδος του κοινού παράγοντα στην παραγοντοποίηση βασίζεται στην επιμεριστική ιδιότητα $$\alpha\cdot \beta +\alpha \cdot \gamma=\alpha\cdot (\beta +\gamma)$$ Η μέθοδος αυτή εφαρμόζεται σε αλγεβρικές παραστάσεις με σκοπό να απλοποιηθούν. Ο βασικός στόχος της είναι να βρεθεί ένας κοινός παράγοντας (αριθμός, μεταβλητή ή μονώνυμο) που να διαιρεί όλους τους όρους της…

Read more
  • 1
  • 2
  • 3
  • Next

#Ανισώσεις (1) #ΑνισώσειςΑΒαθμού (1) #ΚοινέςΛύσεις (1) #ΛύσηΑνισώσεων (1) #Μαθηματικά (1) #ΜαθηματικάΓυμνασίου (1) #ΜαθηματικάΛυκείου (1) #ΠραγματικοίΑριθμοί (1) #ΣύστημαΑνισώσεων (1)

©2025 MathsEdu.gr | WordPress Theme by SuperbThemes