Σημειώσεις Θεωρίας Οι μεταβλητές ενός μονωνύμου αντιπροσωπεύουν αριθμούς και γι´ αυτό στις πράξεις που γίνονται μεταξύ μονωνύμων ισχύουν όλες οι ιδιότητες των πράξεων που ισχύουν και στους αριθμούς. Πρόσθεση μονωνύμων Παράδειγμα: Να κάνετε την πράξη Για να προσθέσουμε αυτά τα δύο μονώνυμα, παρατηρούμε ότι είναι όμοια, καθώς έχουν το ίδιο…
Κατηγορία: 1. ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ
1.2 Μονώνυμα
Σημειώσεις Θεωρίας Ένα μονώνυμο είναι μια ακέραια αλγεβρική παράσταση, επομένως οι εκθέτες των μεταβλητών της είναι φυσικοί αριθμοί, όπου μεταξύ του αριθμητικού παράγοντα και των μεταβλητών σημειώνεται μόνο η πράξη του πολλαπλασιασμού. Συντελεστής και κύριο μέρος Στη βασική του μορφή, αποτελείται από έναν αριθμητικό παράγοντα, που ονομάζεται συντελεστής, και ένα…
1.2 Αριθμητικές και Αλγεβρικές Παραστάσεις
Παράδειγμα 1 Ας υποθέσουμε ότι θέλουμε να υπολογίσουμε το εμβαδόν ενός ορθογωνίου με διαστάσεις 4 cm και 6 cm. Ο τύπος για το εμβαδόν είναι: Εμβαδόν = μήκος πλάτος Για να βρούμε το εμβαδόν αυτού του ορθογωνίου θα αντικαταστήσουμε τις διαστάσεις και θα πρέπει να υπολογίσουμε την παράσταση …
Α1.1.Β Δυνάμεις πραγματικών αριθμών
Σημειώσεις Θεωρίας Πως ορίζεται η δύναμη πραγματικού αριθμού με εκθέτη ακέραιο; Η δύναμη με βάση έναν πραγματικό αριθμό α και εκθέτη ένα φυσικό αριθμό ν ≥ 2 συμβολίζεται με και είναι το γινόμενο ν παραγόντων ίσων με τον αριθμό α. Δηλαδή, Ορίζουμε ακόμη: με με Ποιες είναι οι ιδιότητες των δυνάμεων…
1.1.Γ. Τετραγωνική ρίζα πραγματικού αριθμού
Σημειώσεις Θεωρίας Πως ορίζεται η τετραγωνική ρίζα ενός θετικού αριθμού x;; Η τετραγωνική ρίζα ενός μη αρνητικού αριθμού x συμβολίζεται με και είναι ο μη αρνητικός αριθμός α που όταν υψωθεί στο τετράγωνο μας δίνει τον αριθμό x. Για παράδειγμα, αφού Επίσης, ορίζουμε ότι Παρατήρηση: Δεν ορίζεται τετραγωνική ρίζα αρνητικού…