Skip to content
MathsEdu.gr
MathsEdu.gr

Cogito, ergo sum

  • ΑΡΧΙΚΗ
  • Α ΓΥΜΝΑΣΙΟΥ
    • 7. ΘΕΤΙΚΟΙ ΚΑΙ ΑΡΝΗΤΙΚΟΙ ΑΡΙΘΜΟΙ
  • Β ΓΥΜΝΑΣΙΟΥ
    • Θεωρία Β Γυμνασίου
    • 0. ΡΗΤΟΙ ΑΡΙΘΜΟΙ
    • Α1. ΕΞΙΣΩΣΕΙΣ – ΑΝΙΣΩΣΕΙΣ
    • Α2. ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ
    • Α3. ΣΥΝΑΡΤΗΣΕΙΣ
    • Β1. ΕΜΒΑΔΑ –ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ
    • Β2. ΤΡΙΓΩΝΟΜΕΤΡΙΑ
    • Β3. ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ
  • Γ ΓΥΜΝΑΣΙΟΥ
    • Θεωρία Γ Γυμνασίου
    • Α1. ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ
    • Α2. ΕΞΙΣΩΣΕΙΣ – ΑΝΙΣΩΣΕΙΣ
    • Α3. ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΩΝ ΕΞΙΣΩΣΕΩΝ
    • 4. ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ
    • Β1. ΓΕΩΜΕΤΡΙΑ
  • Α ΛΥΚΕΙΟΥ
    • 2. ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ
    • 7. ΜΕΛΕΤΗ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ
    • ΕΚΦΩΝΗΣΕΙΣ ΑΠΟΔΕΙΞΕΩΝ της Α ΛΥΚΕΙΟΥ
  • Β ΛΥΚΕΙΟΥ
    • ΑΠΟΔΕΙΞΕΙΣ
  • Γ ΛΥΚΕΙΟΥ
    • ΕΚΦΩΝΗΣΕΙΣ ΑΠΟΔΕΙΞΕΩΝ Γ ΛΥΚΕΙΟΥ
  • Όροι χρήσης
MathsEdu.gr

Cogito, ergo sum

1.1 Είδη τριγώνων

Posted on

Σε προηγούμενο άρθρο είδαμε τα κύρια και δευτερεύοντα στοιχεία ενός τριγώνου. Σε αυτό το άρθρο θα δούμε τα είδη των  τριγώνων με βάση τις γωνίες και τις πλευρές τους.

Ένα τρίγωνο ανάλογα με το είδος των γωνιών του ονομάζεται:

  • Οξυγώνιο, όταν έχει όλες τις γωνίες τους οξείες.
  • Ορθογώνιο, όταν έχει μια γωνία ορθή

Σε κάθε ορθογώνιο τρίγωνο η πλευρά που βρίσκεται απέναντι από την ορθή γωνία ονομάζεται υποτείνουσα, ενώ οι άλλες δύο ονομάζονται κάθετες πλευρές.

  • Αμβλυγώνιο, όταν έχει μια γωνία αμβλεία.

Ένα τρίγωνο ανάλογα με τις σχέσεις που συνδέονται οι πλευρές του ονομάζεται:

  • Σκαληνό, όταν έχει όλες του τις πλευρές άνισες
  • Ισοσκελές, όταν έχει δύο πλευρές ίσες.

Σε ισοσκελές τρίγωνο ΑΒΓ με ΑΒ = ΑΓ η πλευρά ΒΓ ονομάζεται βάση του και το σημείο Α κορυφή του.

  • Ισόπλευρο, όταν έχει όλες τις πλευρές τους ίσες.
Είδη τριγώνων (Geogebra link)
Γ ΓΥΜΝΑΣΙΟΥ

Πλοήγηση άρθρων

Previous post
Next post

Related Posts

1.1 Ισότητα τριγώνων

Posted on

Η ισότητα των τριγώνων είναι μια θεμελιώδης έννοια στη γεωμετρία. Σύμφωνα με την έννοια αυτή, αν μετατοπίσουμε ένα τρίγωνο χωρίς να αλλάξει το σχήμα ή το μέγεθός του, τότε το τρίγωνο θα ταυτίζεται με το αρχικό του. Αυτό σημαίνει ότι οι πλευρές και οι γωνίες του νέου τριγώνου θα είναι…

Read More

Γ.1.1 Κύρια στοιχεία τριγώνου

Posted on

Σημειώσεις Θεωρίας   Κύρια Στοιχεία Τριγώνου Σε κάθε τρίγωνο, τα κύρια στοιχεία είναι οι πλευρές και οι γωνίες του. Παράδειγμα: Έστω τρίγωνο ΑΒΓ. •Οι πλευρές του είναι τα ευθύγραμμα τμήματα ΑΒ, ΒΓ, και ΑΓ. •Οι γωνίες του είναι οι γωνίες στις κορυφές Α, Β και Γ, δηλαδή οι γωνίες , ,…

Read More

Βασική τριγωνομετρική ταυτότητα – Απόδειξη

Posted on

Να αποδείξετε ότι για οποιαδήποτε γωνία ω ισχύει Οι τριγωνομετρικοί αριθμοί μιας οξείας γωνίας ω ορίζονται και με τη βοήθεια ενός ορθοκανονικού συστήματος αξόνων.  Αν σ’ ένα ορθοκανονικό σύστημα αξόνων Oxy πάρουμε το σημείο M(x, y) και  ορίσουμε  ρ την απόσταση του σημείου Μ από  την αρχή των αξόνων ισχύει…

Read More

Αφήστε μια απάντηση Ακύρωση απάντησης

Η ηλ. διεύθυνση σας δεν δημοσιεύεται. Τα υποχρεωτικά πεδία σημειώνονται με *

#Ανισώσεις (1) #ΑνισώσειςΑΒαθμού (1) #ΚοινέςΛύσεις (1) #ΛύσηΑνισώσεων (1) #Μαθηματικά (1) #ΜαθηματικάΓυμνασίου (1) #ΜαθηματικάΛυκείου (1) #ΠραγματικοίΑριθμοί (1) #ΣύστημαΑνισώσεων (1)

©2025 MathsEdu.gr | WordPress Theme by SuperbThemes