Skip to content
MathsEdu.gr
MathsEdu.gr

Cogito, ergo sum

  • ΑΡΧΙΚΗ
  • Α ΓΥΜΝΑΣΙΟΥ
    • 7. ΘΕΤΙΚΟΙ ΚΑΙ ΑΡΝΗΤΙΚΟΙ ΑΡΙΘΜΟΙ
  • Β ΓΥΜΝΑΣΙΟΥ
    • Θεωρία Β Γυμνασίου
    • 0. ΡΗΤΟΙ ΑΡΙΘΜΟΙ
    • Α1. ΕΞΙΣΩΣΕΙΣ – ΑΝΙΣΩΣΕΙΣ
    • Α2. ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ
    • Α3. ΣΥΝΑΡΤΗΣΕΙΣ
    • Β1. ΕΜΒΑΔΑ –ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ
    • Β2. ΤΡΙΓΩΝΟΜΕΤΡΙΑ
    • Β3. ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ
  • Γ ΓΥΜΝΑΣΙΟΥ
    • Θεωρία Γ Γυμνασίου
    • Α1. ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ
    • Α2. ΕΞΙΣΩΣΕΙΣ – ΑΝΙΣΩΣΕΙΣ
    • Α3. ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΩΝ ΕΞΙΣΩΣΕΩΝ
    • 4. ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ
    • Β1. ΓΕΩΜΕΤΡΙΑ
  • Α ΛΥΚΕΙΟΥ
    • 2. ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ
    • 7. ΜΕΛΕΤΗ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ
    • ΕΚΦΩΝΗΣΕΙΣ ΑΠΟΔΕΙΞΕΩΝ της Α ΛΥΚΕΙΟΥ
  • Β ΛΥΚΕΙΟΥ
    • ΑΠΟΔΕΙΞΕΙΣ
  • Γ ΛΥΚΕΙΟΥ
    • ΕΚΦΩΝΗΣΕΙΣ ΑΠΟΔΕΙΞΕΩΝ Γ ΛΥΚΕΙΟΥ
  • Όροι χρήσης
MathsEdu.gr

Cogito, ergo sum

1.3 Εμβαδόν τριγώνου

Posted on

Ενότητα σχολικού βιβλίου: 1.3. Εμβαδά επίπεδων σχημάτων

Εμβαδόν τριγώνου

Το εμβαδόν ενός (τυχαίου) τριγώνου είναι ίσο με το μισό του γινομένου μιας βάσης του με το αντίστοιχο ύψος. Για το παρακάτω τρίγωνο ισχύει:

    \[E=\dfrac{\beta\cdot\upsilon}{2}\]

Γνωρίζουμε ότι ένα τρίγωνο έχει 3 ύψη. Έτσι, το εμβαδόν Ε του παρακάτω τριγώνου δίνεται από τον τύπο:

    \[E=\dfrac{A\Gamma \cdot B\Delta}{2}=\dfrac{B\Gamma \cdot AE}{2}=\dfrac{AB\cdot Z\Gamma}{2}\]

Το εμβαδόν ενός ορθογωνίου τριγώνου είναι ίσο με το μισό του γινομένου των δύο κάθετων πλευρών του. Για το παρακάτω ορθογώνιο τρίγωνο ισχύει:

    \[E=\dfrac{AB \cdot A\Gamma}{2}=\dfrac{B\Gamma \cdot A\Delta}{2}\]

Β1. ΕΜΒΑΔΑ –ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ

Πλοήγηση άρθρων

Previous post
Next post

Related Posts

1.4 Πυθαγόρειο Θεώρημα – Ιστορική εξέλιξη

Posted on

Υπάρχουν πάνω από 370 διαφορετικές αποδείξεις για το Πυθαγόρειο Θεώρημα, όπως καταγράφονται στη μαθηματική βιβλιογραφία. Αυτό το μεγάλο πλήθος αποδείξεων αντανακλά την απλότητα και τη θεμελιώδη σημασία του θεωρήματος, καθώς μαθηματικοί από διάφορες εποχές και πολιτισμούς προσπάθησαν να βρουν νέους τρόπους να το αποδείξουν.

Read More

1.3 Εμβαδόν ορθογωνίου

Posted on
Read More

1.4 Πυθαγόρειο θεώρημα – Θεωρία

Posted on
Read More

Αφήστε μια απάντηση Ακύρωση απάντησης

Η ηλ. διεύθυνση σας δεν δημοσιεύεται. Τα υποχρεωτικά πεδία σημειώνονται με *

#Ανισώσεις (1) #ΑνισώσειςΑΒαθμού (1) #ΚοινέςΛύσεις (1) #ΛύσηΑνισώσεων (1) #Μαθηματικά (1) #ΜαθηματικάΓυμνασίου (1) #ΜαθηματικάΛυκείου (1) #ΠραγματικοίΑριθμοί (1) #ΣύστημαΑνισώσεων (1)

©2025 MathsEdu.gr | WordPress Theme by SuperbThemes