Skip to content
MathsEdu.gr
MathsEdu.gr

Cogito, ergo sum

  • ΑΡΧΙΚΗ
  • Α ΓΥΜΝΑΣΙΟΥ
    • 7. ΘΕΤΙΚΟΙ ΚΑΙ ΑΡΝΗΤΙΚΟΙ ΑΡΙΘΜΟΙ
  • Β ΓΥΜΝΑΣΙΟΥ
    • Θεωρία Β Γυμνασίου
    • 0. ΡΗΤΟΙ ΑΡΙΘΜΟΙ
    • Α1. ΕΞΙΣΩΣΕΙΣ – ΑΝΙΣΩΣΕΙΣ
    • Α2. ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ
    • Α3. ΣΥΝΑΡΤΗΣΕΙΣ
    • Β1. ΕΜΒΑΔΑ –ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ
    • Β2. ΤΡΙΓΩΝΟΜΕΤΡΙΑ
    • Β3. ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ
  • Γ ΓΥΜΝΑΣΙΟΥ
    • Θεωρία Γ Γυμνασίου
    • Α1. ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ
    • Α2. ΕΞΙΣΩΣΕΙΣ – ΑΝΙΣΩΣΕΙΣ
    • Α3. ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΩΝ ΕΞΙΣΩΣΕΩΝ
    • 4. ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ
    • Β1. ΓΕΩΜΕΤΡΙΑ
  • Α ΛΥΚΕΙΟΥ
    • 2. ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ
    • 7. ΜΕΛΕΤΗ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ
    • ΕΚΦΩΝΗΣΕΙΣ ΑΠΟΔΕΙΞΕΩΝ της Α ΛΥΚΕΙΟΥ
  • Β ΛΥΚΕΙΟΥ
    • ΑΠΟΔΕΙΞΕΙΣ
  • Γ ΛΥΚΕΙΟΥ
    • ΕΚΦΩΝΗΣΕΙΣ ΑΠΟΔΕΙΞΕΩΝ Γ ΛΥΚΕΙΟΥ
  • Όροι χρήσης
MathsEdu.gr

Cogito, ergo sum

Πράξεις ρητών παραστάσεων – Ασκήσεις

Posted on

a

Άσκηση 1

Δίνεται η παράσταση

A(x)=\dfrac{x}{x^2-4 x}+\dfrac{2}{2x-8}

α) Να βρείτε για ποιες τιμές ορίζεται η παράσταση.

β) Να υπολογίσετε την παράσταση A(x)

Άσκηση 2

Δίνεται η παράσταση

A(x)=\dfrac{x+1}{x}+\dfrac{2x+1}{x+2}-\dfrac{4x+2}{x^2+2x}

α) Να βρείτε για ποιες τιμές ορίζεται η παράσταση.

β) Να υπολογίσετε την παράσταση A(x)

Άσκηση 3

Δίνεται η παράσταση

A(x)=\dfrac{x+2}{x+3}+\dfrac{30}{x^2-9}+\dfrac{5}{3-x}

α) Να βρείτε για ποιες τιμές ορίζεται η παράσταση.

β) Να υπολογίσετε την παράσταση A(x)

Άσκηση 4

Δίνεται η παράσταση

A(x)=\dfrac{8}{16-x^2}+\dfrac{5}{x+4}+\dfrac{1}{x-4}

α) Να βρείτε για ποιες τιμές ορίζεται η παράσταση.

β) Να υπολογίσετε την παράσταση A(x)

Άσκηση 5

Δίνεται η παράσταση

A(x)=\dfrac{x}{x^2-9}+\dfrac{1}{2x+6}+\dfrac{3}{2x-6}

α) Να βρείτε για ποιες τιμές ορίζεται η παράσταση.

β) Να υπολογίσετε την παράσταση $A(x)

Α1. ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ

Πλοήγηση άρθρων

Previous post
Next post

Related Posts

1.6 Παραγοντοποίηση – Ομαδοποίηση

Posted on

Η παραγοντοποίηση με κοινό παράγοντα κατά ομάδες, γνωστή και ως ομαδοποίηση, εφαρμόζεται όταν δεν υπάρχει κοινός παράγοντας σε όλους τους όρους μιας παράστασης. Η μέθοδος βασίζεται στα εξής βήματα: Παράδειγμα: Για την παράσταση  αx + αy + 2x + 2y, η παραγοντοποίηση με ομαδοποίηση γίνεται ως εξής: Σημαντικές Παρατηρήσεις:

Read More

1.5 Τετράγωνο αθροίσματος

Posted on

Ενότητα σχολικού βιβλίου: 1.5 Ταυτότητες Υπάρχουν πολλές ταυτότητες στα μαθηματικά, αλλά ορισμένες εμφανίζονται τόσο συχνά που αξίζει να τις απομνημονεύσουμε. Αυτές τις αποκαλούμε αξιοσημείωτες ταυτότητες. Μία από τις πιο συχνά χρησιμοποιούμενες αξιοσημείωτες ταυτότητες είναι το τετράγωνο αθροίσματος. Βιβλιογραφία: Μαθηματικά Γ Γυμνασίου (Δημήτριος Αργυράκης , Παναγιώτης Βουργάνας, Κωνσταντίνος Μεντής, Σταματούλα Τσικοπούλου,…

Read More

1.4 Πολλαπλασιασμός πολυωνύμων

Posted on

Ο πολλαπλασιασμός των πολυωνύμων βασίζεται σε μεγάλο βαθμό στην επιμεριστική ιδιότητα, η οποία είναι ένα θεμελιώδες εργαλείο της άλγεβρας. Η επιμεριστική ιδιότητα μας λέει ότι για οποιαδήποτε στοιχεία , , και , ισχύει η σχέση:     Αυτή η ιδιότητα εφαρμόζεται στον πολλαπλασιασμό πολυωνύμων. Όταν πολλαπλασιάζουμε δύο πολυώνυμα, εφαρμόζουμε την…

Read More

Αφήστε μια απάντηση Ακύρωση απάντησης

Η ηλ. διεύθυνση σας δεν δημοσιεύεται. Τα υποχρεωτικά πεδία σημειώνονται με *

#Ανισώσεις (1) #ΑνισώσειςΑΒαθμού (1) #ΚοινέςΛύσεις (1) #ΛύσηΑνισώσεων (1) #Μαθηματικά (1) #ΜαθηματικάΓυμνασίου (1) #ΜαθηματικάΛυκείου (1) #ΠραγματικοίΑριθμοί (1) #ΣύστημαΑνισώσεων (1)

©2025 MathsEdu.gr | WordPress Theme by SuperbThemes