Skip to content
MathsEdu.gr
MathsEdu.gr

Cogito, ergo sum

  • ΑΡΧΙΚΗ
  • Α ΓΥΜΝΑΣΙΟΥ
    • 7. ΘΕΤΙΚΟΙ ΚΑΙ ΑΡΝΗΤΙΚΟΙ ΑΡΙΘΜΟΙ
  • Β ΓΥΜΝΑΣΙΟΥ
    • Θεωρία Β Γυμνασίου
    • 0. ΡΗΤΟΙ ΑΡΙΘΜΟΙ
    • Α1. ΕΞΙΣΩΣΕΙΣ – ΑΝΙΣΩΣΕΙΣ
    • Α2. ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ
    • Α3. ΣΥΝΑΡΤΗΣΕΙΣ
    • Β1. ΕΜΒΑΔΑ –ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ
    • Β2. ΤΡΙΓΩΝΟΜΕΤΡΙΑ
    • Β3. ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ
  • Γ ΓΥΜΝΑΣΙΟΥ
    • Θεωρία Γ Γυμνασίου
    • Α1. ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ
    • Α2. ΕΞΙΣΩΣΕΙΣ – ΑΝΙΣΩΣΕΙΣ
    • Α3. ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΩΝ ΕΞΙΣΩΣΕΩΝ
    • 4. ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ
    • Β1. ΓΕΩΜΕΤΡΙΑ
  • Α ΛΥΚΕΙΟΥ
    • 2. ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ
    • 7. ΜΕΛΕΤΗ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ
    • ΕΚΦΩΝΗΣΕΙΣ ΑΠΟΔΕΙΞΕΩΝ της Α ΛΥΚΕΙΟΥ
  • Β ΛΥΚΕΙΟΥ
    • ΑΠΟΔΕΙΞΕΙΣ
  • Γ ΛΥΚΕΙΟΥ
    • ΕΚΦΩΝΗΣΕΙΣ ΑΠΟΔΕΙΞΕΩΝ Γ ΛΥΚΕΙΟΥ
  • Όροι χρήσης
MathsEdu.gr

Cogito, ergo sum

 Εύρεση των παραμέτρων μιας σχέσης & γραμμικές εξισώσεις

Posted on

Math How-To Guide

Let’s practice

Άσκηση 1. Να βρείτε τους αριθμούς λ, μ, ώστε η εξίσωση

    \[x^2+(\lambda-\mu) x+\mu-2 \lambda=0\]

να έχει ρίζες τους αριθμούς -1 και 3.

Άσκηση 2. Αν η εξίσωση (2 \lambda-k-3) x=k-\lambda+1 είναι αόριστη, να βρείτε τους αριθμούς κ, λ.

Άσκηση 3. Αν τα συστήματα 

\left(\Sigma_1\right): \left\{ \begin{array}{l}x-y=3 \\ 2 x+y=9\end{array}\right. και \left(\Sigma_2\right):\left\{ \begin{array}{l}2 x+a y=\beta \\ 3 x-\beta y=a\end{array}\right.

έχουν την ίδια λύση, να βρείτε τους αριθμούς α, β.

Α3. ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΩΝ ΕΞΙΣΩΣΕΩΝ

Πλοήγηση άρθρων

Previous post
Next post

Related Posts

Αλγεβρική επίλυση γραμμικού συστήματος (μέθοδος αντίθετων συντελεστών)

Posted on

Σημειώσεις Θεωρίας Για να επιλύσουμε ένα σύστημα με τη μέθοδο των αντίθετων συντελεστών εργαζόμαστε ως εξής: Πολλαπλασιάζουμε τα μέλη κάθε εξίσωσης με κατάλληλο αριθμό, ώστε να εμφανιστούν αντίθετοι συντελεστές σ ´έναν από τους δύο αγνώστους προκειμένου να τον απαλείψουμε. Προσθέτουμε κατά μέλη τις δύο εξισώσεις, οπότε προκύπτει εξίσωση με έναν…

Read More

Ευθεία διέρχεται από σημείο (εύρεση παραμέτρου, μέρος Β)

Posted on

Math How-To Guide Εφαρμογή 1 (εύρεση παραμέτρου). Αν η ευθεία  διέρχεται από το σημείο , τότε να προσδιοριστεί η τιμή του α.   Σημειώσεις Θεωρίας Αν ένα σημείο ανήκει σε μια ευθεία, τότε οι συντεταγμένες του επαληθεύουν την εξίσωση της ευθείας. Αν οι συντεταγμένες ενός σημείου επαληθεύουν την εξίσωση μιας…

Read More

H εξίσωση x=k

Posted on

Math How-To Guide Εφαρμογή. Να βρείτε την τιμή του λ, ώστε η εξίσωση  να παριστάνει ευθεία που είναι παράλληλη στον άξονα . Σημειώσεις Θεωρίας Μια εξίσωση της μορφής με και   γράφεται ισοδύναμα ή ή Aν συμβολίσζουμε τότε η εξίσωση γράφεται  με πραγματικό αριθμό. Αν η εξίσωση παριστάνει μια ευθεία που…

Read More

Αφήστε μια απάντηση Ακύρωση απάντησης

Η ηλ. διεύθυνση σας δεν δημοσιεύεται. Τα υποχρεωτικά πεδία σημειώνονται με *

#Ανισώσεις (1) #ΑνισώσειςΑΒαθμού (1) #ΚοινέςΛύσεις (1) #ΛύσηΑνισώσεων (1) #Μαθηματικά (1) #ΜαθηματικάΓυμνασίου (1) #ΜαθηματικάΛυκείου (1) #ΠραγματικοίΑριθμοί (1) #ΣύστημαΑνισώσεων (1)

©2025 MathsEdu.gr | WordPress Theme by SuperbThemes