Skip to content
MathsEdu.gr
MathsEdu.gr

Cogito, ergo sum

  • ΑΡΧΙΚΗ
  • Α ΓΥΜΝΑΣΙΟΥ
    • 7. ΘΕΤΙΚΟΙ ΚΑΙ ΑΡΝΗΤΙΚΟΙ ΑΡΙΘΜΟΙ
  • Β ΓΥΜΝΑΣΙΟΥ
    • Θεωρία Β Γυμνασίου
    • 0. ΡΗΤΟΙ ΑΡΙΘΜΟΙ
    • Α1. ΕΞΙΣΩΣΕΙΣ – ΑΝΙΣΩΣΕΙΣ
    • Α2. ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ
    • Α3. ΣΥΝΑΡΤΗΣΕΙΣ
    • Β1. ΕΜΒΑΔΑ –ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ
    • Β2. ΤΡΙΓΩΝΟΜΕΤΡΙΑ
    • Β3. ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ
  • Γ ΓΥΜΝΑΣΙΟΥ
    • Θεωρία Γ Γυμνασίου
    • Α1. ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ
    • Α2. ΕΞΙΣΩΣΕΙΣ – ΑΝΙΣΩΣΕΙΣ
    • Α3. ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΩΝ ΕΞΙΣΩΣΕΩΝ
    • 4. ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ
    • Β1. ΓΕΩΜΕΤΡΙΑ
  • Α ΛΥΚΕΙΟΥ
    • 2. ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ
    • 7. ΜΕΛΕΤΗ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ
    • ΕΚΦΩΝΗΣΕΙΣ ΑΠΟΔΕΙΞΕΩΝ της Α ΛΥΚΕΙΟΥ
  • Β ΛΥΚΕΙΟΥ
    • ΑΠΟΔΕΙΞΕΙΣ
  • Γ ΛΥΚΕΙΟΥ
    • ΕΚΦΩΝΗΣΕΙΣ ΑΠΟΔΕΙΞΕΩΝ Γ ΛΥΚΕΙΟΥ
  • Όροι χρήσης
MathsEdu.gr

Cogito, ergo sum

Νιοστή ρίζα του πηλίκου δύο αριθμών (Απόδειξη)

Posted on

Απόδειξη 5. Nα αποδείξετε ότι για κάθε \textcolor{blue}{\alpha, \beta \in R} με \textcolor{blue}{\alpha \geq 0} και \textcolor{blue}{\beta >0}, ισχύει

    \[\textcolor{blue}{\sqrt[\grn]{\dfrac{\alpha}{\beta}}=\dfrac{\sqrt[\grn]{\alpha}}{\sqrt[\grn]{\beta}}}\]


Έστω \alpha, \beta \in R με \alpha \geq 0 και \beta >0. Τότε

    \begin{align*} \dfrac{\sqrt[\grn]{\gra}}{\sqrt[\grn]{\grb}}&=\sqrt[\grn]{\dfrac{\gra}{\grb}} \Leftrightarrow \\ \left(\dfrac{\sqrt[\grn]{\gra}}{\sqrt[\grn]{\grb}}\right)^{\grn}&=\left(\sqrt[\grn]{\dfrac{\gra}{\grb}}\right)^{\grn} \Leftrightarrow \\ \dfrac{\left(\sqrt[\grn]{\gra}\right)^{\grn}}{\left(\sqrt[\grn]{\grb}\right)^{\grn}}&=\dfrac{\gra}{\grb} \Leftrightarrow \\ \dfrac{\gra}{\grb}&=\dfrac{\gra}{\grb} \end{align*}

που ισχύει.

ΑΠΟΔΕΙΞΕΙΣ

Πλοήγηση άρθρων

Previous post
Next post

Related Posts

Απόλυτη τιμή του γινομένου δυο αριθμών (απόδειξη)

Posted on

Απόδειξη 1. Nα αποδείξετε ότι για κάθε  ισχύει     Επειδή και τα δύο μέλη της ισότητας ειναι μη αρνητικοί αριθμοί, έχουμε:     που ισχύει.

Read More
ΑΠΟΔΕΙΞΕΙΣ

Εκφωνήσεις αποδείξεων (Α Λυκείου)

Posted on

Απόδειξη 1. Nα αποδείξετε ότι για κάθε  ισχύει     Κάνε κλικ εδώ για να δεις την απόδειξη. Απόδειξη 2. Nα αποδείξετε ότι για κάθε  και   ισχύει     Κάνε κλικ εδώ για να δεις την απόδειξη. Απόδειξη 3. Nα αποδείξετε ότι για κάθε ισχύει     Κάνε κλικ…

Read More

Γινόμενο ριζών εξίσωσης 2ου βαθμού (απόδειξη)

Posted on

Απόδειξη 7. Έστω η εξίσωση 2ου βαθμού  και  ρίζες της εξίσωσης. Να αποδείξετε ότι για το γινόμενο των ριζών P ισχύει η σχέση     Έστω η εξίσωση 2ου βαθμού με  ρίζες της εξίσωσης. Αν με P συμβολίσουμε το γινόμενο έχουμε:     δηλαδή δείξαμε ότι    

Read More

Αφήστε μια απάντηση Ακύρωση απάντησης

Η ηλ. διεύθυνση σας δεν δημοσιεύεται. Τα υποχρεωτικά πεδία σημειώνονται με *

#Ανισώσεις (1) #ΑνισώσειςΑΒαθμού (1) #ΚοινέςΛύσεις (1) #ΛύσηΑνισώσεων (1) #Μαθηματικά (1) #ΜαθηματικάΓυμνασίου (1) #ΜαθηματικάΛυκείου (1) #ΠραγματικοίΑριθμοί (1) #ΣύστημαΑνισώσεων (1)

©2025 MathsEdu.gr | WordPress Theme by SuperbThemes