Skip to content
MathsEdu.gr
MathsEdu.gr

Cogito, ergo sum

  • ΑΡΧΙΚΗ
  • Α ΓΥΜΝΑΣΙΟΥ
    • 7. ΘΕΤΙΚΟΙ ΚΑΙ ΑΡΝΗΤΙΚΟΙ ΑΡΙΘΜΟΙ
  • Β ΓΥΜΝΑΣΙΟΥ
    • Θεωρία Β Γυμνασίου
    • 0. ΡΗΤΟΙ ΑΡΙΘΜΟΙ
    • Α1. ΕΞΙΣΩΣΕΙΣ – ΑΝΙΣΩΣΕΙΣ
    • Α2. ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ
    • Α3. ΣΥΝΑΡΤΗΣΕΙΣ
    • Β1. ΕΜΒΑΔΑ –ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ
    • Β2. ΤΡΙΓΩΝΟΜΕΤΡΙΑ
    • Β3. ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ
  • Γ ΓΥΜΝΑΣΙΟΥ
    • Θεωρία Γ Γυμνασίου
    • Α1. ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ
    • Α2. ΕΞΙΣΩΣΕΙΣ – ΑΝΙΣΩΣΕΙΣ
    • Α3. ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΩΝ ΕΞΙΣΩΣΕΩΝ
    • 4. ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ
    • Β1. ΓΕΩΜΕΤΡΙΑ
  • Α ΛΥΚΕΙΟΥ
    • 2. ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ
    • 7. ΜΕΛΕΤΗ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ
    • ΕΚΦΩΝΗΣΕΙΣ ΑΠΟΔΕΙΞΕΩΝ της Α ΛΥΚΕΙΟΥ
  • Β ΛΥΚΕΙΟΥ
    • ΑΠΟΔΕΙΞΕΙΣ
  • Γ ΛΥΚΕΙΟΥ
    • ΕΚΦΩΝΗΣΕΙΣ ΑΠΟΔΕΙΞΕΩΝ Γ ΛΥΚΕΙΟΥ
  • Όροι χρήσης
MathsEdu.gr

Cogito, ergo sum

Η εξίσωση αx^2+βx+γ=0 (μέρος Γ)

Posted on

Α2. ΕΞΙΣΩΣΕΙΣ - ΑΝΙΣΩΣΕΙΣ

Πλοήγηση άρθρων

Previous post
Next post

Related Posts

Α2. ΕΞΙΣΩΣΕΙΣ - ΑΝΙΣΩΣΕΙΣ

Ανισώσεις α’ βαθμού.

Posted on

Math How-To Guide Εφαρμογή. Ας υποθέσουμε ότι ένας μαθητής θέλει να αγοράσει ένα κινητό τηλέφωνο που κοστίζει 320 ευρώ. Ο μαθητής έχει ήδη αποταμιεύσει 100 ευρώ και μπορεί να αποταμιεύει 50 ευρώ το μήνα από το χαρτζιλίκι του. θέλουμε να βρούμε μετά από πόσους  μήνες θα μπορέσει να αγοράσει το κινητό…

Read More

Προβλήματα εξισώσεων δευτέρου βαθμού

Posted on
Read More

H εξίσωση αx+β=0

Posted on
Read More

Αφήστε μια απάντηση Ακύρωση απάντησης

Η ηλ. διεύθυνση σας δεν δημοσιεύεται. Τα υποχρεωτικά πεδία σημειώνονται με *

#Ανισώσεις (1) #ΑνισώσειςΑΒαθμού (1) #ΚοινέςΛύσεις (1) #ΛύσηΑνισώσεων (1) #Μαθηματικά (1) #ΜαθηματικάΓυμνασίου (1) #ΜαθηματικάΛυκείου (1) #ΠραγματικοίΑριθμοί (1) #ΣύστημαΑνισώσεων (1)

©2025 MathsEdu.gr | WordPress Theme by SuperbThemes