Skip to content
MathsEdu.gr
MathsEdu.gr

Cogito, ergo sum

  • ΑΡΧΙΚΗ
  • Α ΓΥΜΝΑΣΙΟΥ
    • 7. ΘΕΤΙΚΟΙ ΚΑΙ ΑΡΝΗΤΙΚΟΙ ΑΡΙΘΜΟΙ
  • Β ΓΥΜΝΑΣΙΟΥ
    • Θεωρία Β Γυμνασίου
    • 0. ΡΗΤΟΙ ΑΡΙΘΜΟΙ
    • Α1. ΕΞΙΣΩΣΕΙΣ – ΑΝΙΣΩΣΕΙΣ
    • Α2. ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ
    • Α3. ΣΥΝΑΡΤΗΣΕΙΣ
    • Β1. ΕΜΒΑΔΑ –ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ
    • Β2. ΤΡΙΓΩΝΟΜΕΤΡΙΑ
    • Β3. ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ
  • Γ ΓΥΜΝΑΣΙΟΥ
    • Θεωρία Γ Γυμνασίου
    • Α1. ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ
    • Α2. ΕΞΙΣΩΣΕΙΣ – ΑΝΙΣΩΣΕΙΣ
    • Α3. ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΩΝ ΕΞΙΣΩΣΕΩΝ
    • 4. ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ
    • Β1. ΓΕΩΜΕΤΡΙΑ
  • Α ΛΥΚΕΙΟΥ
    • 2. ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ
    • 7. ΜΕΛΕΤΗ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ
    • ΕΚΦΩΝΗΣΕΙΣ ΑΠΟΔΕΙΞΕΩΝ της Α ΛΥΚΕΙΟΥ
  • Β ΛΥΚΕΙΟΥ
    • ΑΠΟΔΕΙΞΕΙΣ
  • Γ ΛΥΚΕΙΟΥ
    • ΕΚΦΩΝΗΣΕΙΣ ΑΠΟΔΕΙΞΕΩΝ Γ ΛΥΚΕΙΟΥ
  • Όροι χρήσης
MathsEdu.gr

Cogito, ergo sum

Πλευρές και Γωνίες σε Ορθογώνιο Τρίγωνο

Posted on
Read more

1.2 Μονώνυμα

Posted on

Σημειώσεις Θεωρίας Ένα μονώνυμο είναι μια ακέραια αλγεβρική παράσταση, επομένως οι  εκθέτες των μεταβλητών της είναι φυσικοί αριθμοί, όπου μεταξύ του αριθμητικού παράγοντα και των μεταβλητών σημειώνεται μόνο η πράξη του πολλαπλασιασμού. Συντελεστής και κύριο μέρος Στη βασική του μορφή, αποτελείται από έναν αριθμητικό παράγοντα, που ονομάζεται συντελεστής, και ένα…

Read more

1.2 Πράξεις με μονώνυμα

Posted on

Σημειώσεις Θεωρίας Οι μεταβλητές ενός μονωνύμου αντιπροσωπεύουν αριθμούς και γι´ αυτό στις πράξεις που γίνονται μεταξύ μονωνύμων ισχύουν όλες οι ιδιότητες των πράξεων που ισχύουν και στους αριθμούς. Πρόσθεση μονωνύμων Παράδειγμα: Να κάνετε την πράξη Για να προσθέσουμε αυτά τα δύο μονώνυμα, παρατηρούμε ότι είναι όμοια, καθώς έχουν το ίδιο…

Read more

1.2 Αριθμητικές και Αλγεβρικές Παραστάσεις

Posted on

Παράδειγμα 1 Ας υποθέσουμε ότι θέλουμε να υπολογίσουμε το εμβαδόν ενός ορθογωνίου με διαστάσεις 4 cm και 6 cm.   Ο τύπος για το εμβαδόν είναι: Εμβαδόν = μήκος πλάτος Για να βρούμε το εμβαδόν αυτού του ορθογωνίου θα αντικαταστήσουμε τις διαστάσεις και θα πρέπει να υπολογίσουμε την παράσταση   …

Read more

1.1 Εμβαδόν επίπεδης επιφάνειας

Posted on

 Ενότητα σχολικού βιβλίου: B1.1 Εμβαδόν επίπεδης επιφάνειας Φωτογραφία από https://www.guggenheim.org/artwork/2019

Read more

1.2 – Μονάδες μέτρησης επιφανειών

Posted on

 Ενότητα σχολικού βιβλίου: B1.2 Μονάδες μέτρησης επιφανειών

Read more

1.3 Εμβαδόν τετραγώνου

Posted on

Τετράγωνο ονομάζεται το τετράπλευρο που έχει τις πλευρές του ίσες και τις γωνίες του ορθές. Βιβλιογραφία: Μαθηματικά Β Γυμνασίου (Παναγιώτης Βλάμος, Παναγιώτης Δρούτσας, Γεώργιος Πρέσβης, Κωνσταντίνος Ρεκούμης) Creative Commons Αναφορά Δημιουργού – Μη Εμπορική Χρήση – Παρόμοια Διανομή 4.0 Διεθνές

Read more

1.3 Εμβαδόν ορθογωνίου

Posted on

Ορθογώνιο ονομάζεται το τετράπλευρο που έχει τις απέναντι πλευρές ίσες και όλες τις γωνίες του ορθές. Το εμβαδόν ενός ορθογωνίου υπολογίζεται ως το γινόμενο του μήκους της μίας πλευράς του (μήκος) με το μήκος της διπλανής πλευράς του (πλάτος). Δηλαδή, αν το μήκος είναι \(\alpha\) και το πλάτος είναι \(\beta\), τότε το εμβαδόν E του…

Read more

1.3 Εμβαδόν τριγώνου

Posted on
Read more

1.3 Εμβαδόν παραλληλογράμμου

Posted on
Read more
  • Previous
  • 1
  • …
  • 3
  • 4
  • 5
  • …
  • 19
  • Next

#Ανισώσεις (1) #ΑνισώσειςΑΒαθμού (1) #ΚοινέςΛύσεις (1) #ΛύσηΑνισώσεων (1) #Μαθηματικά (1) #ΜαθηματικάΓυμνασίου (1) #ΜαθηματικάΛυκείου (1) #ΠραγματικοίΑριθμοί (1) #ΣύστημαΑνισώσεων (1)

©2026 MathsEdu.gr | WordPress Theme by SuperbThemes